QUINTECH ${ }^{\circ}$

The Saurce for RF Reliability

The Experts in Reliable RF Signal Management

End-to-End Solutions for RF Signal Routing

- Earth Stations and Teleports
- Broadcast and CATV Headends
- Government and Military
- Command \& Control Centers
- Wireless Lab Test \& Measurement Automation

Quintech Electronics \& Communications Customer List

Government

Domestic

SES^ Alcatel-Lucent (1)

at\&t Điscovery ©N

International

TOCablemás. \& telenor REUTERS © Θ ntl: $\mathbb{C} \mathbb{T} \mathbb{N} \|_{i}$ SingTel NDTV TVB Shaw)
Teresat OPTUS llibC Telefonica tetelus

About Quintech:

Quintech Electronics \& Communications, Inc. (www.quintechelectronics.com) founded in 1989, is a state-of-the-art designer and manufacturer of RF signal management communications equipment. The company's products are globally distributed and vital for RF signal management. Quintech products are the keystones to the automation of today's advanced telecommunication network infrastructures and test laboratories. Our worldwide customers include satellite, government, wireless telecommunications, broadcast and CATV service providers. Quintech produces RF matrix switches, RF over fiber, redundancy switches, relay switches, splitters, combiners, amplifiers and DC powering products and equipment. The products are available in L-band, broadband, IF and wireless frequencies. These RF signal management products are used for monitor and control, test and measurement, redundancy applications and surveillance. Quintech products are designed for high reliability and maximized uptime providing years of maintenance free service. We emphasize the design and development of superior RF signal management products to provide the highest quality systems and solutions for our valued customers.

RF \& L-Band Matrix Routers:

The company designs and manufactures the world's largest configuration matrix switches in the smallest form factor. These are state of the art products that simplify and facilitate RF signal management solutions. Quintech matrices span frequencies from DC to 6 GHz . These superior designs are used worldwide in gateways, teleports, broadcast and cable headends.

RF Test Matrices:

Our customers include wireless service providers, network equipment and component manufacturers. Our products are used for laboratory, R\&D and product conformance, interoperability, network load, software regression and manufacturing testing applications which support legacy network compatibility with MIMO, LTE, LTE-U, WiFi, and other mobility testing. We also provide Lab Automation and Management software that facilitates wireless lab testing.

Broadcast Satellite Government

```
XTREME 256
XTREME 256-C
XTREME }8
XTREME 80-C
XTREME }3
XTREME 32-C
XTREME 32 Hybrid
XTREME 32 Bi-Directional
RP1
RFM
AMP 2150
LS/LC 2150 Series
```

256 Port RF Fan-Out Matrix Switch
Page 5
256 Port RF Fan-In Matrix Switch Page 6
80 Port RF Fan-Out Matrix Switch Page 7
80 Port RF Fan-In Matrix Switch Page 8
32 Port RF Fan-Out Dual Band + S-Band Matrix Switch Page 9
32 Port RF Fan-In L-Band + S-Band Matrix Switch Page 10
Dual $8 x 8$ Hybrid RF Matrix Switch
32 Port Fan-Out Bi-Directional RF Matrix Switch
Modular 1RU Chassis
RF Routing Switch
L-Band Line Amplifier
Splitters and Combiners, Active and Passive, L-Band

Page 11
Page 12
Page 13
Page 14
Page 26
Page 20-22

Wireless/ATE

```
NEXUS-4
NEXUS Wi-5G
NEXUS-M
NEXUS-R
```

6 GHz RF Matrix Switch for Wireless Technologies
6 GHz RF Test Switch
6 GHz Bi-Directional RF Mesh Attenuator Matrix
High Power Blocking Bi-Directional RF Matrix

Page 15
Page 16
Page 17
Page 18

Broadband \& CATV

XTREME 32 Bi-Directional
RFM
LS 1000A
LC 1000A
LSC 1000P

32 Port Fan-Out Bi-Directional RF Matrix Switch
Monitoring Switch
Active Broadband Splitters
Active Broadband Combiners
Passive Broadband Splitter/Combiner

Page 12
Page 14
Page 23
Page 24
Page 25

General Products

Evertz Products

Evertz Multiframes
Evertz Rack-Based Modules
Evertz Integrated Receiver Decoders
Evertz 2406/ 2408
Evertz 2400 ODU
Evertz 7780D4A-ASI
Evertz 7780M4-ASI
RF Splitters and Combiners
LS 2150A
LS 2150P
LC 2150A
LS 1000A
LC 1000A
LSC 1000P

7800FR, 7801FR Multiframe
7807LT-2, 7807LR-2, 7708LT, 7708LR Rack Based Modules
DVBS/S/S2X MPEG-2/H. 264 SD/ HD Receiver Decoder
Fiber Optic Receiver Transmitter
Outdoor Integrated RF Fiber Transmission System
Quad ASI TDM-Demux
Quad ASI TDM-Mux

Splitters, Active, L-Band
Splitters, Passive, L-Band
Combiners, Active, L-Band
Splitters, Active, $5-1000 \mathrm{MHz}$
Combiners, Active $5-1000 \mathrm{MHz}$
Splitter/ Combiner, Passive Broadband

Page 27
Page 28-29
Page 30-31
Page 32
Page 33
Page 34
Page 35

Page 20
Page 21
Page 22
Page 23
Page 24
Page 25

Software

Q-LAAMP

XTREME 256
 256 Port Fan-Out L-Band RF Matrix Switch

Specifications:*1	XTREME 256
Configuration:	128 Inputs/128 Outputs
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC
Impedance:	75Ω or 50Ω
Operating Frequency:	$850-2450 \mathrm{MHz}$
Frequency Response:	$\pm 1 \mathrm{~dB}$ Typ. $\pm 2 \mathrm{~dB}$ Max. $\pm .2 \mathrm{~dB}$ Typ. $\pm .5 \mathrm{~dB}$ Max. Over Any 40 MHz Channel
Input P1dB:	0 dBm
Noise Figure:	<20 dB @ 0 dB Input Gain
OIP3:	+10 dBm Min.
Input Return Loss:	14 dB Typ. 12 dB Min.
Output Return Loss:	16 dB Typ. 12 dB Min.
Isolation (input-to-input):	75 dB Typ. 65 dB Min.
Isolation (output-to-output):	75 dB Typ. 65 dB Min.
Isolation (input-to-output):	65 dB Typ. 55 dB Min.
Input Gain Range:	-17 dB to +13.5 dB in 0.5 dB Steps
Output Gain Range:	-14.5 dB to +33 dB in 0.5 dB Steps
RF Sensing:	-5 dBm to -50 dBm
Group Delay:	5 ns Max.
Switching Time:	125 ms
Local Control:	15" Front Panel Touchscreen
Remote Control:	SNMP, TELNET, TCP/IP; Web Browser Interface Via Ethernet, Remote Panel
Power Requirements:	100-250 VAC Autoranging, $50 / 60 \mathrm{~Hz}$
Power Consumption:	525 W @ 120 VAC 650 W @ 240 VAC
Size:	12 RU Total Rack Space Required, $21^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 20.5^{\prime \prime} \mathrm{D}$ to Rear Panel (22" Including Rear Handles)
Weight:	150 lbs

XTREME 256-C

256 Port Fan-In L-Band RF Matrix Switch

XTREME 256-C

General Description:

The XTREME 256-C next generation L-band matrix switch features 256 ports in a compact 12 RU chassis. The XTREME 256-C is a full fan-in (combining), non-blocking switch where one or multiple inputs can be routed to an output. The XTREME 256-C features an industry exclusive flexible matrix architecture (patented) that supports both symmetric and asymmetric configurations of 256 combined inputs and outputs in a single chassis. Asymmetric configurations such as $192 \times 64,160 \times 96$, and more can be implemented as well as the standard 128×128 configuration. It is designed for maximum reliability with redundant power, fans trays, and control cards plus RF redundancy. It is also designed for ease of maintenance with built-in self-test (BIST) capability and the ability to hot-swap all active components from the front of the unit. The XTREME 256-C is highly scalable and can easily be expanded up to 2048×2048 using multiple XTREME 256-C modules. Optional integrated expansion ports allow for large systems without using external expansion modules, significantly reducing system size and number of cables.
Features \& Benefits:

- Compact modular design, 256 ports in 12 RU, easily expandable to 2048×2048
- Asymmetrical configurations up to 248 inputs in a single chassis
- Adjustable gain on inputs allow RF performance optimization
- Option for fiber optic inputs
- Touchscreen local control and embedded web GUI interface
- Easy hot-swap of all active cards, power supplies, and fan trays from the front
- Redundant hot-swap control cards plus independent GUI control system
- Remotely controlled via web browser GUI interface, SNMP, TELNET or TCP/IP via customer supplied PC

Specifications:*1	XTREME 256-C
Configuration:	128 Inputs/128 Outputs
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC
Impedance:	75Ω or 50Ω
Operating Frequency:	$850-2450 \mathrm{MHz}$
Frequency Response:	$\begin{array}{\|l\|} \hline \pm 3 \mathrm{~dB} \\ \pm .75 \mathrm{~dB} \text { Over Any } 36 \mathrm{MHz} \text { Channel } \end{array}$
Input P1dB:	+6 dBm
Noise Figure:	$<23 \mathrm{~dB}$ @ 0 dB Gain
OIP3:	+15 dBm
Input Return Loss:	14 dB Typ. 12 dB Min.
Output Return Loss:	15 dB Typ. 12 dB Min.
Isolation (input-to-input):	75 dB Typ. 65 dB Min.
Isolation (output-to-output):	75 dB Typ. 65 dB Min.
Isolation (input-to-output):	60 dB Typ. 55 dB Min.
Input Gain Range:	-17.5 dB to +14 dB in 0.5 dB Steps
RF Sensing:	+10 dBm to -50 dBm
Output P1dB:	+14 dBm
Local Control:	15" Front Panel Touchscreen
Remote Control:	SNMP, TELNET, TCP/IP; Web Browser Interface Via Ethernet, Remote Panel
Inter-Module Control Data:	XR Bus
Power Requirements:	100-250 VAC Autoranging, $50 / 60 \mathrm{~Hz}$
Power Consumption:	525 W @ 120 VAC 650 W @ 240 VAC
Size:	12 RU Total Rack Space Required, 21" H x 19" W x 20.5" D to Rear Panel 22" (Including Rear Handles)
Weight:	150 lbs

XTREME 80 80 Port Fan-Out L-Band RF Matrix Switch

XTREME 80

General Description:

The XTREME 80 next generation L-band matrix switch features 80 ports in a compact 2 RU chassis. The XTREME 80 is a full fan-out (distributive), non-blocking switch where an input can be routed to any or all outputs. The XTREME 80 features an industry exclusive flexible matrix architecture (patented) that supports both symmetric and asymmetric configurations of 80 combined inputs and outputs in a single chassis. Asymmetric configurations such as 16×64, 24×40, and more can be implemented as well as the standard 32×32 configuration. Optional $13 / 18 \mathrm{~V}, 22 \mathrm{kHz}$ tone LNB power is available on all input ports. The XTREME 80 is designed for maximum reliability with redundant power and control cards.

Features \& Benefits:

- $50-200 \mathrm{MHz}$ and $850-2450 \mathrm{MHz}$ or $50-1000 \mathrm{MHz}$ frequency range
- Compact modular design up to 80 ports in 2 RU chassis
- Asymmetrical configurations up to (32x32, 16x64, 24x40) in a single chassis
- LNB power 400 MA per input $13 / 18 \mathrm{~V}$ with 22 KHz tone
- Option for fiber optic inputs

Fiber optic receivers

- Adjustable gain and attenuation on all inputs and outputs allows the user to adjust the RF level for optimum performance
- Fast and easy hot-swap (less than 30 seconds) of any active cards

Specifications:*1	XTREME 80
Configurations:	16x64, 24x40, 32x32, 40x24, 64x16, 32x48, 20x48, 60×20, 48×32
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC
Impedance:	75Ω or 50Ω
Operating Frequency:	$50-200 \mathrm{MHz}$ \& 850-2450 MHz or $50-1000 \mathrm{MHz}$
Frequency Response:	$\begin{array}{\|l\|} \hline+/-1.5 \mathrm{~dB} \\ +/-0.5 \mathrm{~dB} \text { Over Any } 36 \mathrm{MHz} \text { Channel } \\ \hline \end{array}$
Input P1dB:	0 dBm
Noise Figure:	13 dB @ 0 dB Gain
OIP3:	+10 dBm
Input Return Loss:	14 dB
Output Return Loss:	14 dB
Isolation (input-to-input):	60 dB
Isolation (output-to-output):	60 dB
Isolation (input-to-output):	55 dB
Input Gain Range:	-19.5 dB to +12 dB (32x32); -24 to +8 dB for (16x64)
Output Gain Range:	-15.5 dB to +16 dB , All Builds
LNB Power Each Port:	0/13/18 V, 22 kHz Tone
	400 mA
	180 W of Total System Power Available to LNB
Optical Wavelength:	$900-1650 \mathrm{~nm}$
Optical Return Loss:	14 dB
Optical Connectors:	SC/APC, LC/APC
Local Control:	Front Panel 2.2" Display and Rotary Switch Joystick
Remote Control:	SNMP, TELNET, TCP/IP, Web Browser Interface Via Ethernet, Remote Panel
Power Requirements:	100-240 VAC Autoranging, $50 / 60 \mathrm{~Hz}$
Power Consumption:	165 W Typical, 345 W with LNB Option (32x32), 255 W with LNB Option (16x64)
Size:	$2 \mathrm{RU}: 3.5$ "H x 19"W x 23.25 D"

[^0]*Specifications may vary with connector type. See individual specification sheet for specific performance data.

XTREME 80-C
 80 Port Fan-In L-Band RF Matrix Switch

XTREME 80-C

General Description:
The XTREME 80-C next generation L-band matrix switch features 80 ports in a compact 2 RU chassis. The XTREME 80-C is a full fan-in (combining), non-blocking switch where one or multiple inputs can be routed to an output. The XTREME 80-C features an industry exclusive flexible matrix architecture (patented) that supports both symmetric and asymmetric configurations of 80 combined inputs and outputs in a single chassis. Asymmetric configurations such as 64×16 can be implemented as well as the standard 32×32 configuration. The XTREME $80-\mathrm{C}$ is designed for maximum reliability with redundant power supplies and control cards.

Features \& Benefits:

- Compact modular design with a variety of configurations adding to 80 ports in 2 RU
- Easy hot-swap of all RF cards, power supplies and control cards
- Option for fiber optic inputs
- Independent input and output gain control
- Remotely controlled via web browser GUI interface, SNMP, Telnet or TCP/IP via customer supplied PC
- Redundant hot-swap control cards

Specifications:*1	XTREME 80-C
Configurations:	32x32, 64x16
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC
Impedance:	75Ω or 50Ω
Operating Frequency:	$850-2450 \mathrm{MHz}$
Frequency Response:	$\begin{aligned} & \hline+/-1.5 \mathrm{~dB} \\ & +/-0.5 \mathrm{~dB} \text { Over Any } 36 \mathrm{MHz} \text { Channel } \end{aligned}$
Input P1dB:	0 dBm
Noise Figure:	13 dB @ 0 dB Gain
OIP3:	+10 dBm
Input Return Loss:	14 dB
Output Return Loss:	14 dB
Isolation (input-to-input):	60 dB
Isolation (output-to-output):	60 dB
Isolation (input-to-output):	55 dB
Input Gain Range:	-14.5 to +17 dB
Output Gain Range:	-19.5 to +12 dB (32X32)
Local Control:	Front Panel 2.2" LCD Display with Rotary Switch Joystick
Remote Control:	SNMP, TELNET, TCP/IP, Web Browser Interface Via Ethernet, Remote Panel
Power Requirements:	100-240 VAC Autoranging, $50 / 60 \mathrm{~Hz}$
Power Consumption:	160 W
Size:	$2 \mathrm{RU}: 3.5$ " $\mathrm{H} \times 19$ "W x 23.25 D"

[^1]
XTREME 32

32 Port Fan-Out Dual Band + S-Band RF Matrix Switch

General Description:

The XTREME 32 Dual Band matrix switch is a full fan-out (distributive) non-blocking signal management solution that routes an input to any or all outputs. The design features an industry exclusive architecture that supports both symmetric and asymmetric configurations of 32 combined inputs and outputs in a compact 1 RU chassis. Hot-swappable redundant power supplies, I/O Modules, and a field replaceable cooling fan provide maximum reliability.

Features \& Benefits:

- $50-200 \mathrm{MHz}, 850-2500 \mathrm{MHz} \& 950-3500 \mathrm{MHz}$ operating range
- Flexible matrix configurations ($16 \times 16,4 \times 28,8 \times 24$)
- LNB power 400 mA per Input $13 / 18 \mathrm{~V}$ with 22 kHz tone
- Option for fiber optic inputs
- Adjustable input and output gain
- Redundant hot-swappable power supplies
- Hot-swappable input and output adapters
- Dual gigabit ethernet ports
- Field replaceable cooling fan

Specifications:*1	L-Band			S-Band
Configurations:	4x28, 8x24, 12x20, 16x16, 20x12, 24x8, 28x4			16x16
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC			SMA
Impedance:	75Ω or 50Ω			50Ω
Operating Frequency:	$50-200 \mathrm{MHz}$	950-2150 MHz	850-2500 MHz	$950-3500 \mathrm{MHz}$
Frequency Response:	+/-2.5 dB	+/-1.5 dB	+/-2.5 dB	+/-2.0 dB
Any 36 MHz :	+/- 0.8 dB	+/- 0.5 dB	+/- 0.7 dB	+/- 0.5 dB Max.
Input P1dB:	0 dBm			
Noise Figure:				
Default Gain:	20 dBm Max.	13 dBm Max.	14 dBm Max.	14 dB max
Max Input Gain:				10 dB Typical*
OIP3:	9 dBm Min.	10 dBm Min.	9 dBm Min.	8 dBm Min.
Input Return Loss:	12 dBm Min.	14 dBm Min.	12 dBm Min.	14 dB
Output Return Loss:	12 dBm Min.	14 dBm Min.	12 dBm Min.	14 dB
Isolation (input-to-input):	60 dB			
Isolation (output-to-output):	60 dB			
Isolation (input-to-output):	55 dB			45 dB
Input Gain Range:	-19.5 to 12 dB in 0.5 dB Steps			
Output Gain Range:	-15.5 to 16 dB in 0.5 dB Steps			-20.5 to 11 dB in
LNB Power Each Port:	0/13/18 V, 22 kHz			
	400 mA Nominal (550mA Peak In-rush)			
	Short Circuit Protection with Automatic Reset			
	Status: Under Current (<50mA), Short and Normal			
Optical Wavelength:	900-1650 nm			
Optical Return Loss:	14 dB			
Optical Connectors:	SC/APC, LC/APC			
Remote Control:	SNMP, TELNET, TCP/IP, Web Browser Interface Via Ethernet, Remote Panel			
Power Requirements:	100-240 VAC Autoranging, 50/60 Hz 5A Max.			
Power Consumption:	100W Typical, 200 W Max. with LNB Optional			
Local Control:	Front Panel 2.2" LCD Display with Rotary Switch Joystick			
Size:	$1 \mathrm{RU}: 1.75$ "H x 19"W x $18.5 \mathrm{D"}$			

[^2] ${ }^{1}$ Specifications valid at unity gain (Input gain $=0 \mathrm{~dB}$, Output gain $=0 \mathrm{~dB}$)

XTREME 32-C

32 Port Fan-In L-Band + S-Band RF Matrix Switch

General Description:

The XTREME 32-C next generation L-band matrix switch features 32 ports

Features \& Benefits:

- $50-200 \mathrm{MHz}, 850-2500 \mathrm{MHz} \& 950-3500 \mathrm{MHz}$ operating range in a compact 1 RU chassis. The XTREME 32-C is a full fan-in (combining), non-blocking switch where one or more inputs can be routed to any output. The XTREME 32-C features an industry exclusive flexible matrix architecture that supports both symmetric and asymmetric configurations of 32 combined inputs and outputs in a single chassis. Asymmetric configurations such as $28 \times 4,24 \times 8$, and more can be implemented as well as the standard 16×16 configuration. The XTREME 32-C is designed for maximum reliability with redundant and hot-swappable power supplies.
- Compact design with a variety of configurations adding to 32 ports in 1 RU
- Easy hot-swap power supplies, fan and adapters
- Independent input and output gain control
- Option for fiber optic inputs
- Remotely controlled via web browser GUI interface, SNMP, Telnet or TCP/ IP via customer supplied PC
- Hot-swappable input and output adapters
- Flexible matrix configurations (16x16)
- Redundant hot swappable power supplies
- Dual gigabit ethernet ports
- Field replaceable cooling fan

Specifications:*1	L-Band		S-Band
Configurations:	4x28, 8x24, 12x20, 16x16, 20x12, 24x8, 28x4		16x16
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC		SMA
Impedance:	75Ω or 50Ω		50Ω
Operating Frequency:	$850-2500 \mathrm{MHz}$	$50-200 \mathrm{MHz}$ \& 950-2150 MHz	$950-3500 \mathrm{MHz}$
Frequency Response:	$\begin{array}{\|l\|} \hline+/-2.0 \mathrm{~dB} \\ +/-0.5 \mathrm{~dB} \text { Max. } \\ \text { (Over any } 36 \mathrm{MHz} \text { Channel) } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline+/-3.0 \mathrm{~dB} \\ +/-0.7 \mathrm{~dB} \text { Max. } \\ \text { (Over any } 36 \mathrm{MHz} \text { Channel) } \\ \hline \end{array}$
Input P1dB:	0 dBm		
Noise Figure:	13 dB @ 0 dB Gain (One Connection)	$\begin{aligned} & \hline 13 \mathrm{~dB} \text { Max. } \\ & (22 \mathrm{~dB} \text { Full Fan-In) } \end{aligned}$	15 dB Max. (24 dB Full FanIn)
Default Gain:	13 dB @ 0 dB Gain (One Connection)	13 dB Max. (22 dB Full Fan-In)	15 dB Max. (24 dB Full FanIn)
Max Input Gain:		$\begin{array}{\|l\|} \hline 9 \mathrm{~dB} \text { Typical } \\ \text { (21 dB Full Fan-In) } \end{array}$	10 dB Typica** (23 dB Full Fan-In)
OIP3:	10 dBm Min.	10 dBm Min.	8 dBm Min.
Input Return Loss:	14 dB		
Output Return Loss:	14 dB		
Isolation (input-to-input):	60 dB	50 dB	45 dB
Isolation (output-to-output):	60 dB	50 dB	45 dB
Isolation (input-to-output):	55 dB	50 dB	45 dB
Input Gain Range:	-14.5 to 17 dB in 0.5 dB Steps	-19.5 to 12 dB in .5 dB steps	-19.5 to 12 dB in .5 dB steps
Output Gain Range:	$\begin{aligned} & \hline-18.5 \text { to } 13.0 \mathrm{~dB} \text { in } 0.5 \mathrm{~dB} \\ & \text { Steps } \end{aligned}$	-20.5 to 11 dB in .5 dB steps	-20.5 to 11 dB in .5 dB steps
Local Control:	Front Panel 2.2" LCD Display with Rotary Switch Joystick		
Remote Control:	SNMP, TELNET, TCP/IP, Web Browser Interface Via Ethernet, Remote Panel		
Power Requirements:	100-240 VAC Autoranging, $50 / 60 \mathrm{~Hz}$		
Power Consumption:	100W Typical		
Size:	$1 \mathrm{RU}: 1.75$ "H x 19"W x 18.5 D"		

${ }^{1}$ Specifications valid at unity gain (Input gain $=0 \mathrm{~dB}$, Output gain $=0 \mathrm{~dB}$)
*Specifications may vary with connector type. See individual specification sheet for specific performance data.

XTREME 32

Dual 8x8 Hybrid RF Matrix Switch

General Description:

The XTREME 32 Hybrid matrix switch is an L-band matrix switch that features a non-blocking 8×8 splitting matrix and a non-blocking 8×8 combining matrix with hot-swap I/O cards, redundant power supplies, and control module in a compact 1 RU chassis. Dual 10/100/1000 Ethernet ports allow for redundant control connections.

Features \& Benefits:

- $850-2500 \mathrm{MHz}$ operating range
- Redundant hot-swappable power supplies
- Hot-swappable input and output adapters
- Adjustable input and output gain
- Dual gigabit ethernet ports
- Field replaceable cooling fan
- Fan-out LNB power option on input adapters
- Option for fiber optic inputs

Specifications:	Full Fan-out		Full Fan-in	
Configurations:	8x8		8x8	
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC			
Impedance:	75Ω or 50Ω		75Ω or 50Ω	
Operating Frequency:	$950-2150 \mathrm{MHz}$	$850-2500 \mathrm{MHz}$	$950-2150 \mathrm{MHz}$	$850-2500 \mathrm{MHz}$
Frequency Response:	+/- 1.5 dB	+/-3 dB	+/-1.5 dB	+/-2.5 dB
Any 36 MHz:	+/-. 5 dB	+/-. 7 dB	+/-. 5 dB	+/-. 5 dB
Input P1dB:	0 dBm Min.		0 dBm Min.	
Noise Figure:	13 dB Max.	14 dB Max.	13 dB Max.	21 dB Max.
OIP3:	10 dBm Min.	10 dBm Min.	10 dBm Min.	10 dBm Min.
Input Gain Range:	-15.5 to 16 dB in 0.5 dB steps		-17.5 to 14 dB in 0.5 dB steps	
Output Gain Range:	-14.5 to 17 dB in 0.5 dB steps		-13.5 to 18 dB in 0.5 dB steps	
Isolation (input-to-input):	60 dB Min.	60 dB Min .	60 dB Min.	60 dB Min.
Isolation (output-to-output):	60 dB Min.	60 dB Min.	60 dB Min.	60 dB Min.
Isolation (input-to-output):	55 dB Min.	50 dB Min.	55 dB Min.	50 dB Min.
Input Return Loss:	14 dB Min.		14 dB Min.	
Output Return Loss:	14 dB Min.		14 dB Min.	
Power Requirements:	100-240 VAC Autoranging, $50 / 60 \mathrm{~Hz}$			
Power Consumption:	110 W typical			
Local Contro:	Front panel 2.2" display and rotary knob			
Remote Control:	SNMP, TELNET, TCP/IP, Web Browser Interface Via Ethernet Remote Panel			

[^3]*Specifications may vary with connector type. See individual specification sheet for specific performance data.

XTREME 32

32 Port Fan-Out Bi-Directional RF Matrix Switch

General Description:

The XTREME 32 DOCSIS 3.1 compatible matrix switch is a full fan-out (distributive) non-blocking signal management solution that routes an input to any or all outputs. The design features an industry exclusive architecture that supports both symmetric and asymmetric configurations of 32 combined inputs and outputs in a compact 1 RU chassis. Hot-swappable redundant power supplies, I/O Modules, and a field replaceable cooling fan provide maximum reliability.

Features \& Benefits:

- $5-1800 \mathrm{MHz}$ operating range
- Bidirectional configuration ideal for DOCSIS 3.1 testing
- Redundant hot-swappable power supplies
- Option for fiber optic inputs
- Hot-swappable input and output adapters
- Dual gigabit ethernet ports
- Field replaceable cooling fan

Specifications:*1	XTREME 32		
Configurations:	16x16 (Standard)		
RF Connectors:	F-Type, BNC 75Ω or 50Ω, SMA, Mixed or Optical Input Receivers SC/APC or LC/APC		
Impedance:	75Ω		
Operating Frequency:	$5-54 \mathrm{MHz}$	$54-1218 \mathrm{MHz}$	1218-1800 MHz
Frequency Response:	+/-4 dB	+/-2.5 dB	+/-2 dB
Any 6 MHz Flatness:	+/- 0.5 dB	+/-0.5 dB	+/-0.5 dB
Input P1dB:	30 dBm Min.		
Insertion Loss:	26	27	30
OIP3:	40 dBm Min.		
Input Return Loss:	7 dB Min. >10 dB Typical		
Output Return Loss:	7 dB Min. >10 dB Typical		
Isolation (input-to-input):	60 dB		
Isolation (output-to-output):	60 dB		
Isolation (input-to-output):	50 dB		
Local Control:	Front Panel 2.2" LCD Display with Rotary Switch Joystick		
Remote Control:	Dual 10/100/1000 Base Tx Ethernet Ports, SNMP, V2c, v3 TCp/ IP, Quintech 2.15 Protocol (Port 9100) Web server: TELNET		
Power Requirements:	100-240 VAC Autoranging, 50/60 Hz 5A Max.		
Power Consumption:	55W Typical		
Size:	1 RU: 1.75 "H x 19"W x 18.5 D "		

[^4]Modular 1RU Chassis
w/LNB Power Insertion and Redundancy Switch Cards

General Description:

The RP1 1RU modular chassis provides centralized power control and signal redundancy options. Hot-Swappable redundant power supplies, I/O Modules, and a field replaceable cooling fan provide maximum reliability. Eight card slots provide combinations of up to 16 Bias-T DC Power Inserters, eight 2×1 RF sensing and LNB power redundancy switch with Q-SENSE ${ }^{\oplus}$, or 16 quick disconnect switchable DC power outputs. Remote control is available via web browser GUI, SNMP, or Quintech API protocol over TCP/IP.

Features \& Benefits:

- $700-3000 \mathrm{MHz}$ operating range
- Eight hot-swappable card slots with flexible configurations
- LNB status monitoring
- 10 MHz reference distribution to all slots
- Redundant hot swappable power supplies
- Field replaceable cooling fan

Dual LNB Bias-T Card Specifications:			
Type:	Dual		
Each Port:	Selectable 0/13/18 VDC, 22 kHz Tone 400 mA Nominal (550 mA Peak Inrush) Short Circuit Protection with Automatic Reset		
Status	Under Current (<50 mA), Short, and Normal		
Operating Frequency (MHz):	950-2150 MHz	$950-2500 \mathrm{MHz}$	$700-3000 \mathrm{MHz}$
Insertion Loss (Max):	1 dB	1 dB	1.5 dB
Return Loss (Min):	14 dB	12 dB	10 dB
Isolation (Min):	65 dB		
10 MHz Input Power Level (Max):	0 dBm		
RF Connectors:	F(f), BNC(f) 75Ω or 50Ω, SMA		

2x1 Redundancy Switch Card Specifications:			
Type:	2x1 w/RF Sensing		
Operating Frequency (MHz):	$950-2150 \mathrm{MHz}$	950-2500 MHz	$700-3000 \mathrm{MHz}$
Insertion Loss:	$3+/-0.5 \mathrm{~dB}$	$3+/-1 \mathrm{~dB}$	$3.5+/-1 \mathrm{~dB}$
Return Loss (Min):	14 dB	13 dB	10 dB
Isolation (Min):	50 dB	50 dB	45 dB
RF Sensing Range:	-50 to 0 dBm		
Max Input Power:	24 dBm		
RF Connectors:	$\mathrm{F}(\mathrm{f}), \mathrm{BNC}(\mathrm{f}) 75 \Omega$ or 50Ω, SMA		

Chassis Specifications:

Power Requirements:	$100-240 \mathrm{~V} \sim, 50 / 60 \mathrm{~Hz}$
Power Consumption:	10 W Standby, 200 W Fully Loaded
Local Control:	$2.2^{\prime \prime}$ LCD Display with Rotary Control Knob
Computer Control:	TCP/IP, Web Browser Interface, or SNMP
Size:	1 RU (1.75" H x 19" W x 18.5" D)
Weight:	12 lbs. Gross (boxed), 9 lbs. net

*Specifications may vary with connector type. See individual specification sheet for specific performance data

RFM
 RF Routing Switches

RFM

General Description:

The RFM is a routing switch that transparently passes RF signals. Quintech's proprietary design provides lossless switching while minimizing noise figure through the switch. It's compact design fits $16 x 1$ in a 1 RU chassis and the switches can be cascaded to expand to 256×1. The RFM is used for centralized test and measurement applications and monitoring large numbers of RF signals.

Features \& Benefits:

- 5-1800 MHz continuous frequency range covering all DOCSIS 3.1 to 1200 MHz and to future 1800 MHz frequencies
- L-band $950-2150 \mathrm{MHz}$ frequency range
- Unity gain switching with low noise figure
- Pay as you grow, expandable in the field to 256×1
- Remote control over TCP/IP via open source API
- Web browser interface for easy setup and configuration

Applications:

- Remote testing of CATV headends and monitoring of upstream and downstream paths
- Automate testing of multiple devices under test to shared analyzer

Specifications	RFM		
Configuration:	16x1 (Up to 256x1 with Additional Modules)		
RF Connector:	F-Type	F-Type, SMA	F-Type, SMA
Impedance:	75Ω	$50 \Omega, 75 \Omega$	$50 \Omega, 75 \Omega$
Operating Frequency:	5-1800 MHz	950-2500 MHz	$5-2500 \mathrm{MHz}$
P1dB:	+4 dBm	+5 dBm	+4 dBm
Noise Figure:	$<13 \mathrm{~dB}$	$<14 \mathrm{~dB}$	$<16 \mathrm{~dB}$
OIP3:	15 dBm		
Insertion Loss:	0 dB @ $\pm 1.5 \mathrm{~dB}$	0 dB @ $\pm 1.5 \mathrm{~dB}$	0 dB @ $\pm 3 \mathrm{~dB}$
Input Return Loss:	13 dB	13 dB	13 dB
Output Return Loss:	14 dB	14 dB	13 dB
Isolation:	50 dB	50 dB	45 dB
Remote Control:	Ethernet Port: TCP/IP, Web Browser Interface or SNMP		
Control Module Connectors:	RJ45, XR Bus		
Expansion Module Connectors:	XR Bus		
Power Requirements:	100-240 VAC, 50/60 Hz		
Power Consumption:	9 W		
Size:	1RU: 1.75 " H x 19 " W x 18.5" D		

[^5]
NEXUS-4

6 GHz Bi-Directional RF Attenuator Matrix Switch

NEXUS-4

General Description:

The NEXUS-4 is a bi-directional fully non-blocking 32×32 RF matrix switching system that can route any input ports to any output ports in a 6 RU chassis. With the frequency range of 400 MHz to 6 GHz and the capability of expanding to 64×64, it enables large scale wireless testing that involves many MIMO base stations and devices. The builtin programmable attenuators and efficient automation interface provide ease-of-use testing of signal fade and emulation of mobility scenarios. It can dramatically increase lab efficiency by eliminating manual patch panel and cabling as it can be remotely reconfigured for different test setups consistently in seconds. The utilization of NEXUS-4 RF matrices will expand your testing capabilities, improve ROI of lab instruments, and reduce time to market.
Features \& Benefits:

- 400 to 6000 MHz frequency range covering all major wireless technologies
- Support 32×32 RF ports in 6 RU with modular design expandable to 64×64
- Solid state switching and attenuation for consistent, repeatable and glitchless performance; reconfigure any test setup in seconds
- Fully non-blocking splitting and combining that supports MIMO testing
- Emulate free space incremental path loss of 0 to 60 dB in 0.5 dB steps
- High power handling of up to 30 dBm (1w)
- Management software Q-LAAMP enables resource and time allocation for high lab efficiency

Specifications:*	NEXUS-4		
Configuration:	Up to 32 Port A/32 Port B in a Single 6 RU Chassis		
RF Connectors:	N-type, SMA, QMA, TNC, 4.3-10		
Impedance:	50Ω		
Operating Frequency:	$400-700 \mathrm{MHz}$	$700-4000 \mathrm{MHz}$	$4000-6000 \mathrm{MHz}$
Matrix Type:	Passive Bi-directional, Fully Non-blocking		
Switching Technology:	Solid State		
OIP3:	60 dBm Min.		
P1dB:	40 dBm Min.		
Fixed Attenuation: ${ }^{1}$	37 dB Typical	45 dB Max.	46 dB Typical
Variable Attenuation (at Each Cross Point):	0 to 60 dB Attenuation in 0.5 dB Steps		
Isolation Port A to Port A:	100 dB Single Connection, 50 dB Multiple Connections		
Isolation Port B to Port B:	80 dB Single Connection, 50 dB Multiple Connections		
Isolation Port A to Port B:	100 dB		
On/ Off Isolation:	70 dB Min.	70 dB Min.	65 dB Min.
Return Loss:	10 dB	14 dB	10 dB
No Damage Signal Level:	+40 dBm Max.		
Power Requirements:	100-240 VAC Autoranging, $50 / 60 \mathrm{~Hz}$		
Power Consumption:	63 W		
Local Control:	Front Panel 2.2" LCD Display with Rotary Switch Joystick		
Remote Control:	Ethernet, TELNET, SNMP, or TCP/IP Via Customer Supplied Control System, XR Bus for Expansion		
Software:	Embedded Web Server and API Protocol, Fast Ethernet Option, Q-LAAMP Option		
Size:	6 RU : 10.5 " H x 19" W x $25^{\prime \prime} \mathrm{D}$		
Weight:	117 lbs in 32×32 Configuration		
Certifications:	FCC Part 15, CE, NRTL, TUV		

[^6]
NEXUS Wi-5G
 6 GHz RF Test Matrix

General Description:

NEXUS Wi-5G

The NEXUS Wi-5G is a wideband 600 MHz to 6 GHz bi-directional RF attenuator matrix test system which enables automated testing of 2×2 to 8×8 MIMO connections. 64 sets of integrated fixed attenuators and 0 to 60 dB programmable attenuators provide up to 90 dB of total attenuation per connection. The NEXUS Wi-5G can connect any input port to one or all output ports and any output port to one or all input ports using integrated wideband splitters and combiners. Unused connections can be turned off using internally terminated 100 dB isolation switches. The NEXUS Wi-5G enables interoperability, coexistence and testing of current and emerging standards. The matrix is used for roaming, handover, beam forming, wireless mesh network test and validation of network equipment. Its frequency range covers 4G/LTE $5 G$ Wireless and WiFi 6. Circuit-switched fallback testing can be conducted in a controlled environment isolated from commercial signals, emulation of mobility scenarios, interband carrier aggregation and WiFi interference tests are easily configured. Regression testing can be completed in reduced time enhancing laboratory ROI.

The NEXUS Wi-5G used in conjunction with Quintech's proprietary Q-LAAMP ${ }^{\circledR}$ software management platform provides a ready-to-use test system with an intuitive GUI and user configurable RF fading applications.

Features \& Benefits:

- 600 MHz to 6 GHz continuous frequency range covering all major wireless and technologies
- 64 Total 0 to 60 dB programmable attenuators in 0.5 dB steps
- High power handling up to 30 dBm
- Integrated splitters and combiners support 2×2 up to 8×8 MIMO connection testing

Specifications:*	NEXUS Wi-5G
Configuration:	4x8, 8×8
RF Connectors:	N-type, SMA, QMA, TNC, 4.3-10
Impedance:	50Ω
Operating Frequency:	$600-6000 \mathrm{MHz}$
Matrix Type:	Passive Bi-Directional, Non-Blocking, Full Fan-In/Fan-Out
Switching Technology:	Solid State
IIP3:	$>60 \mathrm{dBm}$
P1dB:	$>36 \mathrm{dBm}$
Fixed Attenuation:	35 dB @ 6 GHz
Variable Attenuation:	0 to 60 dB Attenuation in 0.5 dB Steps
Isolation Port A to Port A:	100 dB Single Connection, 45 dB Multiple Connections
Isolation Port B to Port B:	80 dB Single Connection, 45 dB Multiple Connections
Isolation Port A to Port B:	100 dB
On/ Off Isolation: ${ }^{1}$	100 dB
Return Loss:	13 dB Min.
No Damage Signal Level:	+36 dBm Max.
Power Requirements:	100-240 VAC Autoranging, $50 / 60 \mathrm{~Hz}$
Power Consumption:	20 W
Remote Control:	Ethernet, TELNET, SNMP, or TCP/IP Via Customer Supplied Control System, XR Bus for Expansion
Software:	Fast Ethernet API Protocol, Embedded Web Server and API Protocol, Q-LAAMP Option
Size:	3 RU 5.25" H x 19" W x $25.25^{\prime \prime}$ D
Weight:	40 lbs . Gross (Boxed), 30 lbs . Net

${ }^{1} 70 \mathrm{~dB}$ Min. normalized to insertion loss of path
*All product designs and specifications subject to change without notice. See individual specification sheet for specific performance data.

NEXUS-M
 6 GHz Bi-Directional RF Mesh Attenuator Matrix

General Description:

NEXUS Wi-5G

NEXUS-4

The NEXUS-M is a bi-directional 32 port mesh attenuator matrix where any port can connect to any or all remaining ports. With wideband frequency range spanning 400 MHz to 6 GHz , the matrix can be used for automating UHF, LTE, Bluetooth, WiFi, CAT-M, NB-IoT, and GPS component and software application tests. Each connection has an independently controlled variable attenuator, allowing power levels to be controlled between nodes. With millisecond switching speeds, software and firmware regression tests can be performed over many network configurations in a much shorter time compared to manual configuration of a patch panel. Easily configure string and mesh constellation networks for beam hopping latency measurements and network resiliency when adding or dropping nodes in software defined networks. The utilization of NEXUS-M RF mesh matrices will help reduce time to market of new hardware and software, and improve firmware compliance tests.
Features \& Benefits:

- $400-6000 \mathrm{MHz}$ frequency range covering all major wireless technologies
- Available in 8,16 or 32 port systems
- Solid state switching and attenuation for consistent and repeatable performance
- Emulate over-the-air incremental path loss
- Q-LAAMP management software enables resource and time allocation for lab operation efficiency

Specifications:*	NEXUS-M
Configuration:	$8,16,32$ Port Systems
RF Connectors:	$\mathrm{N}(\mathrm{f}), \mathrm{SMA}(\mathrm{f})$
Impedance:	50Ω
Operating Frequency:	$400-6000 \mathrm{MHz}$
Matrix Type:	Passive Bi-directional
Switching Technology:	Solid State
P1dB:	43 dBm
Fixed Attenuation (Max):	$400-700$ MHz: $40 \mathrm{~dB}, 700-4000 \mathrm{MHz:} 45 \mathrm{~dB}, 4000-6000 \mathrm{MHz}: 50 \mathrm{~dB}$
Variable Attenuation:	0 to 60 dB in 0.5 dB Steps (25 dB Dynamic Range Between Connected Ports)
On/Off Isolation:	70 dB Normalized to 0 dB Attenuation State
Return Loss:	$400-700$ MHz: $10 \mathrm{~dB}, 700-4000 \mathrm{MHz:} \mathrm{14} \mathrm{dB}, \mathrm{4000-6000} \mathrm{GHz:} \mathrm{10} \mathrm{dB}$
No Damage Signal Level:	+43 dBm
Local Control:	Front Panel 2.2" LCD Display with Rotary Switch Joystick
Remote Control:	Ethernet, TCP/IP Via Customer Supplied Control System
Software:	API Protocol, Q-LAAMP Embedded Web GUI
Power Requirements:	$100-240$ VAC, 50/60 Hz
Certifications:	FCC Part 15, CE, NRTL, TUV

*Specifications may vary with connector type. See individual specification sheet for specific performance data.

NEXUS-R

High Power Bi-Directional RF Blocking Matrix

General Description:

The NEXUS-R is a passive bi-directional blocking matrix switch that can relay 32 A ports to 32 B ports. It is designed to handle high power up to 50 W for direct connection to base stations. Based on latching relay switching technology, it retains the connections even upon power loss. Quintech's proprietary design minimizes the return signal and insertion loss through the switch while maximizing the isolation between ports. Its low loss and distortion preserves signal integrity for performance testing while the high isolation prevents crosstalk between test equipment. As a result, the NEXUS-R has superior RF performance and can be used in highly demanding applications such as base station beam forming testing.

Features \& Benefits:

- Latching relays ensure cross points remain connected upon loss of power
- All active components, including RF matrix cards and power supply, are field replaceable
- Multiple modules can be combined to create larger matrices

Specifications:*	NEXUS-R
Operating Frequency:	DC -2.8 GHz
Connector Type:	N-Type
Matrix Type:	Passive Bi-directional Blocking
Switching Technology:	Miniature RF Relay
Impedance:	50Ω
Maximum Input RF Power:	$50 \mathrm{~W}(47 \mathrm{dBm})$ at $2.5 \mathrm{GHz}, 20 \mathrm{C}$
Maximum Hot Switch RF Power:	$10 \mathrm{~W}(40 \mathrm{dBm})$ at $2.5 \mathrm{GHz}, 20 \mathrm{C}$
Total RF Power into 32 Channels:	150 W CW, 20C
Amplitude Matched Channel-to- Channel:	$\pm 1 \mathrm{~dB}$ Max. @ 2.8 GHz
Isolation (Any Configuration):	90 dB Min.
Insertion Loss:	11 dB Max. @ 2.8 GHz
Return Loss:	14 dB Typ., 10 dB Min.
Switching Speed:	<30 Millisecond/Crosspoint
Switch Cycles to EOL:	$>10^{6}(1$ Million)
Power Requirements:	$100-240$ VAC Autoranging, 50/60 Hz
Power Consumption:	<100 W
Local Control:	Front Panel Keypad with LCD Display
Remote Control:	Ethernet Port; TELNET or TCP/IP Via Customer Supplied Control System, XR Bus for
Expansion	
Software:	Embedded Web Browser Interface
Size:	12 RU: 21" H x 19" W x 25.25" D Including Rear Handles
Mounting:	Handles and Rack Mounts Attached to Front or Rear of Box
Weight:	190 Ibs Gross (Boxed), 107 Ibs Net

[^7]
Q-LAAMP

Quintech Lab Automation and Management Package

General Description:

Quintech Electronics proprietary Laboratory Automation and Management Package, Q-LAAMP, provides lab managers the ability to manage and allocate resources such as base stations and RF instruments among many shared users. Using the NEXUS RF Matrix, this software manages resource allocation to labs and users without a patch panel and manual operations. Its web-based user interface provides easy access from any PC or tablet browser. Q-LAAMP also includes other intuitive features that facilitate testing, monitoring and troubleshooting.

Q-LAAMP makes lab management and resource sharing easy and significantly increases lab efficiency, reduce test time and save costs.
Features \& Benefits:

- Schedule and resource management
- Enables multiple users to share the same lab environment
- Shared resources can be independently allocated
- Secure remote control and access to Q-LAAMP to avoid unauthorized changes
- Color-coded port level monitoring allows quick troubleshooting
- Port labeling to avoid confusion in a multi-user changing lab environment

LS 2150A Series Active (Amplified-Zero Loss) L-Band Splitters

General Description:

The LS 2150 series of active L-band ($950-2150 \mathrm{MHz}$) splitters permit simple splitting of RF signals to multiple destinations. Configurations available from 4 to 64 ports, including dual and quad units. A variety of powering options and features are available. Active units will power LNBs. The active splitters are DC blocked on all outputs.

Features \& Benefits:

- Convenient, centralized rack mount designs improve cable management
- Microstrip design provides better performance and reliability
- Larger configurations eliminate cascading for better performance
- Active (zero loss) splitters allow for ease in RF design
- Greatly improves cable management by allowing for easy access to cable routing and easing identification of cabling
- Reduces cable connector failures by eliminating the need for frequent manual connects/disconnects

LS64 2150A 64-way
Active L-Band Splitter

Specifications:*	LS04 2150A	LS08 2150A	LS12 2150A	LS16 2150A	LS24 2150A	LS32 2150A	LS48 2150A	LS64 2150A
Configuration:	1x4	1x8	1x12	1x16	1x24	1x32	1x48	1x64
RF Connectors:	F-Type, BNC 75Ω or 50Ω	$\begin{aligned} & \text { F-Type, BNC } \\ & 75 \Omega \text { or } 50 \Omega \end{aligned}$	F-Type, BNC 75Ω or 50Ω	F-Type, BNC 75Ω or 50Ω	F-Type, BNC 75Ω or 50Ω			
Impedance:	$75 \Omega, 50 \Omega$							
Operating Frequency:	$\begin{array}{\|l} 950-2150 \\ \mathrm{MHz} \end{array}$	$\begin{array}{\|l} 950-2150 \\ \mathrm{MHz} \end{array}$	$\begin{array}{\|l} \hline 950-2150 \\ \mathrm{MHz} \end{array}$	$\begin{aligned} & 950-2150 \\ & \mathrm{MHz} \end{aligned}$				
Frequency Response:	$\pm 1 \mathrm{~dB}$	$\pm 1 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$					
P1dB:	+3 dBm	0 dBm	-5 dBm	0 dBm	-10 dBm	-10 dBm	-10 dBm	-10 dBm
Input Return Loss:	14 dB	13 dB	13 dB	14 dB	12 dB	12 dB	12 dB	12 dB
Output Return Loss:	15 dB	16 dB	12 dB					
Insertion Loss:	$0 \pm 2 \mathrm{~dB}$							
Isolation:	18 dB							
Power Requirements:	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-pin Quick Connect 100-240 AC $50 / 60 \mathrm{~Hz}$
LNB Power:	18 VDC							
Power Consumption:	3 W	3 W	3 W	3 W	5 W	5 W	6 W	8 W
Size:	$\begin{aligned} & \hline 1 \text { RU: } 1.75 " \\ & \text { H x } 19 " \text { W } \\ & 6.5 " \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \text { RU: } 1.75 " \\ & \text { Hx 19" W x } \\ & 6.5 " \mathrm{D} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \text { RU: } 1.75 " \\ \text { H x 19" W x } \\ 6.5^{\prime \prime} \mathrm{D} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1 \text { RU: } 1.75 " \\ \text { H x } 19 " W x \\ 6.5 " D \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \text { RU: } 3.5 " \\ H \text { x } 19 " W ~ x ~ \\ 14 " D \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \text { RU: } 3.5 " \\ H \text { x } 19 " W ~ x ~ \\ 14 " D \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \text { RU: } 5.25^{\prime \prime} \\ \text { H x } 19 " W x \\ 20 " D \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \text { RU: } 5.25 " \\ \text { H x } 19 " W x \\ 20 " \mathrm{D} \\ \hline \end{array}$
Weight:	4.5 lbs Gross (Boxed), 2.0 lbs Net	5 lbs Gross (Boxed), 2.7 lbs Net	5 lbs Gross (Boxed), 2.5 lbs Net	5 lbs Gross (Boxed), 2.5 lbs Net	10.5 lbs Gross (Boxed), 7 lbs Net	11 lbs Gross (Boxed), 6.2 lbs Net	15.4 lbs Gross (Boxed), 9.4 lbs Net	15.5 lbs Gross (Boxed), 9.2 lbs Net

*Specifications may vary with connector type. See individual specification sheet for specific performance data.

LS 2150P Series
 Passive L-Band Splitters

General Description:

The LS 2150 series of passive L-band ($950-2150 \mathrm{MHz}$) splitters permit simple splitting of RF signals to multiple destinations. Configurations available from 2 to 32 ports, including dual and quad units. A variety of features are available. The passive splitters are power and 10 MHz passing on port 1 .

Features \& Benefits:

- Convenient, centralized rack mount designs improve cable management
- Microstrip design provides better performance and reliability
- Larger configurations eliminate cascading for better performance
- Greatly improves cable management by allowing for easy access to cable routing and easing identification of cabling
- Reduces cable connector failures by eliminating the need for frequent manual connects/disconnects

LS 2150 Passive Splitter

Specifications:*	LS02 2150P	LS04 2150P	LS08 2150P	LS12 2150P	LS16 2150P	LS24 2150P	LS32 2150P
Configuration:	1x2	1x4	1x8	1x12	1x16	1x24	1x32
RF Connectors:	F-Type, BNC 75Ω or 50Ω						
Impedance:	$75 \Omega, 50 \Omega$						
Operating Frequency:	$950-2150 \mathrm{MHz}$						
Frequency Response:	$\pm 0.5 \mathrm{~dB}$	$\pm 1 \mathrm{~dB}$	$\pm 1 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$
Insertion Loss:	$4 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$	$8 \pm 1 \mathrm{~dB}$	$11 \pm 1.5 \mathrm{~dB}$	$17 \pm 2 \mathrm{~dB}$	$18 \mathrm{~dB} \pm 2 \mathrm{~dB}$	$21 \pm 2 \mathrm{~dB}$	$22 \pm 2 \mathrm{~dB}$
Input Return Loss:	11 dB	13 dB	12 dB	14 dB	14 dB	10 dB	10 dB
Output Return Loss:	15 dB	14 dB	14 dB	14 dB	14 dB	13 dB	13 dB
Isolation:	18 dB	18 dB	18 dB	20 dB	18 dB	20 dB	20 dB
Size:	$\begin{aligned} & \hline 1 \text { RU: } 1.75^{\prime \prime} \\ & \text { H x 19" Wx } \\ & 6.5^{\prime \prime} \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \text { RU: } 1.75^{\prime \prime} \\ & \text { H x 19" Wx } \\ & 6.5^{\prime \prime} \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \text { RU: } 1.75^{\prime \prime} \\ & \text { H x 19" Wx } \\ & 6.5^{\prime \prime} \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \text { RU: } 1.75^{\prime \prime} \\ & \text { H x 19" W } \\ & 6.5^{\prime \prime} \mathrm{D} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1 \text { RU: } 1.75^{\prime \prime} \\ & \text { H x } 199^{\prime \prime} \mathrm{W} x \\ & 6.5^{\prime \prime} \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{RU}: 3.5^{\prime \prime} \mathrm{Hx} \\ & 19^{\prime \prime} \mathrm{W} \text { x } 14^{\prime \prime} \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 2 \mathrm{RU}: 3.5^{\prime \prime} \mathrm{H} \mathrm{x} \\ & 19{ }^{\prime \prime} \mathrm{W} \text { x } 14^{\prime \prime} \mathrm{D} \end{aligned}$
Weight	3.5 lbs Gross (Boxed), 2.5 lbs Net	3.4 lbs Gross (Boxed), 2.2 lbs Net	3.7 lbs. Gross (Boxed), 2.7 lbs Net	4 lbs Gross (Boxed), 3 lbs Net	4 lbs Gross (Boxed), 3 lbs Net	9.5 Ibs Gross (Boxed), 6.5 lbs Net	9.5 Ibs Gross (Boxed), 6.5 lbs Net

[^8]
LC 2150A Series
 Active (Amplified-Zero Loss) L-Band Combiners

LC12 2150A
12-way Active L-Band Combiner

LC24 2150A
24-way Active L-Band Combiner

General Description:

The LC 2150A series commercial quality active L-band combiners meet strict level, match, and loss specifications achieved through the use of Quintech's proprietary microstrip and SMT technology. These unity gain combiners operate over the satellite L-band (950-2150 MHz) frequency range and enable the combining of RF signals with repeatable performance over the entire frequency range and across all I/O ports.

Specifications:*	LC12 2150A	LC24 2150A
Configurations:	12 x 1	24×1
RF Connectors:	F-Type, BNC 75Ω or 50Ω	F-Type, BNC 75 or 50
Impedance:	75Ω or 50Ω	75Ω or 50Ω
Operating Frequency:	$950-2150 \mathrm{MHz}$	$950-2150 \mathrm{MHz}$
Frequency Response:	$\pm 2 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
P1dB:	-2 dBm (Each Input)	-5 dBm (Each Input)
Noise Figure:	19 dB	27 dB
Input Return Loss:	12 dB	12 dB
Output Return Loss:	12 dB	12 dB
Insertion Loss:	$0 \pm 2 \mathrm{~dB}$	$0 \pm 2.5 \mathrm{~dB}$
Isolation:	18 dB	18 dB
Power Requirements:	$18-24 \mathrm{VDC}$ Via 2-Pin Quick Connect Barrier Strip	
Power Consumption:	6 W	Strip ${ }^{1}$
Size:	$1 \mathrm{RU}: 1.75 " \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D}$	13 W
Weight:	5.3 lbs Gross (Boxed), 2.8 Ibs Net	2 RU:Pin Quick Connect Barrier

*Specifications may vary with connector type. See individual specification sheet for specific performance data.
${ }^{1} \mathrm{~A} / \mathrm{C}$ adapter sold separately

LS 1000A Series Active (Amplified - Zero Loss) Splitters

General Description:

The $L S$ series is a commercial quality line of ($5-1000 \mathrm{MHz}$) active broadband RF splitters that meet strict level, match, and loss specifications achieved through the use of Quintech's proprietary technology. Custom configurations available.

Features \& Benefits:

- Convenient, centralized rack mount designs improve cable management
- Microstrip design provides better performance and reliability
- Larger configurations eliminate cascading for better performance
- Active (zero loss) splitters allow for ease in RF design
- Greatly improves cable management by allowing for easy access to cable routing and identification of cables
- Reduces cable connector failures by eliminating the need for frequent manual connects/disconnects
LS32 1000A
32-way Active Broadband Splitter

From Cable System

For distribution of cable feed to individual drops - downstream only

Specifications:*	LS16 1000A	LS32 1000A	LS48 1000A	LS64 1000A
Configurations:	1x16	1x32	1x48	1x64
RF Connectors:	F-Type, BNC 75Ω			
Operating Frequency:	$5-1000 \mathrm{MHz}$	$5-1000 \mathrm{MHz}$	$5-1000 \mathrm{MHz}$	$5-1000 \mathrm{MHz}$
Frequency Response:	$\pm 2.5 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$
P1dB:	+6 dBm	+6 dBm	+3 dBm	+3 dBm
Input Return Loss:	13 dB	14 dB	14 dB	14 dB
Output Return Loss:	14 dB	15 dB	15 dB	15 dB
Insertion Loss:	0 + 2 dB @ 500 MHz	$0 \pm 2 \mathrm{~dB}$ @ 500 MHz	$0 \pm 2 \mathrm{~dB}$ @ 500 MHz	$0 \pm 2 \mathrm{~dB}$ @ 500 MHz
Isolation:	16 dB	18 dB	16 dB	18 dB
Power Requirements:	18-24 VDC Via 2-Pin Quick Connect 100-240 VAC, $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-Pin Quick Connect 100-240 VAC, $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-Pin Quick Connect 100-240 VAC, $50 / 60 \mathrm{~Hz}$	18-24 VDC Via 2-Pin Quick Connect 100-240 VAC, $50 / 60 \mathrm{~Hz}$
Power Consumption:	13 W	17 W	20 W	25 W
Size:	$\begin{aligned} & \text { 1 RU: } 1.75^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \\ & \mathrm{x} 6.5^{\prime \prime} \mathrm{D} \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \mathrm{RU}: 3.5 " \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \\ \text { x } 14^{\prime \prime} \mathrm{D} \\ \hline \end{array}$	$\begin{aligned} & \hline 3 \text { RU: } 5.25^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \\ & \text { x 20" D } \end{aligned}$	$\begin{array}{\|l\|} \hline 3 \text { RU: } 5.25^{\prime \prime} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \\ \text { x } 20^{\prime \prime} \mathrm{D} \end{array}$

[^9]
LC 1000A Series
 Active Broadband Combiners

LC64 1000A
64-way Active Broadband Combiner

General Description:

The LC 1000A series is a commercial quality line of ($5-1000 \mathrm{MHz}$) active broadband RF combiners that meet strict level, match, and loss specifications achieved through the use of Quintech's proprietary technology. Custom configurations available.

Features \& Benefits:

- Convenient, centralized rack mount designs improve cable management
- Microstrip design provides better performance and reliability
- Larger configurations eliminate cascading for better performance
- Active (zero loss) combiners allow for ease in RF design
- Greatly improves cable management by allowing for easy access to cable routing an identification of cables
- Reduces cable connector failures by eliminating the need for frequent manual connects/disconnects

Specifications:*	LC16 1000A	LC32 1000A	LC64 1000A
Configurations:	16x1	32x1	64x1
RF Connectors:	F-Type, BNC 75Ω	F-Type, BNC 75Ω	F-Type, BNC 75Ω
Impedance:	$75 \Omega, 50 \Omega$	$75 \Omega, 50 \Omega$	$75 \Omega, 50 \Omega$
Operating Frequency:	$5-1000 \mathrm{MHz}$	$5-1000 \mathrm{MHz}$	$5-1000 \mathrm{MHz}$
Frequency Response:	$\pm 2.5 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
P1dB:	+8 dBm Each Input	+1 dBm Each Input (Single Carrier Equivalent)	-2.0 dBm Each Input
Input Return Loss:	14 dB	12 dB	17 dB
Output Return Loss:	7 dB	12 dB	12 dB
Insertion Loss:	$0 \pm 2 \mathrm{~dB}$ @ 500 MHz	$0 \pm 2 \mathrm{~dB}$ @ 500 MHz	$0 \pm 2 \mathrm{~dB}$ @ 500 MHz
Isolation:	16 dB	16 dB	20 dB
Power Requirements:	18-24 VDC Via 2-Pin Quick Connect Barrier Strip	18-24 VDC Via 2-Pin Quick Connect Barrier Strip	18-24 VDC Via 2-Pin Quick Connect Barrier Strip
Power Consumption:	14 W	17 W	24 W
Size:	1 RU: 1.75 " H x 19" W x 6.5" D	$2 \mathrm{RU}: 3.5$ " H x 19" W x 14" D	$3 \mathrm{RU}: 5.25$ " H x 19" W x 20" D

[^10]
LSC 1000P Series
 Passive Broadband Splitter/ Combiner

LSC04 1000P 4-way
Passive Broadband Splitter/Combiner

LSC32 1000P 32-way
Passive Broadband Splitter/Combiner

General Description:

The LSC 1000P series are commercial quality passive broadband RF splitters/combiners that meet strict level, match, and loss specifications achieved through the use of Quintech's proprietary microstrip and SMT technology. They operate over the $5-1000 \mathrm{MHz}$ frequency range and enable the splitting or combining of RF signals with repeatable performance over the entire frequency range and across all I/O ports.

Specifications:*	LSC04 1000P	LSC08 1000P	LSC16 1000P	LSC32 1000P	LSC48 1000P	LSC64 1000P
Configuration:	4x1	8x1	16x1	32x1	48x1	64x1
RF Connectors:	F-Type, (BNC 75 Ω Optional)					
Impedance:	$75 \Omega, 50 \Omega$					
Operating Frequency:	$5-1000 \mathrm{MHz}$					
Frequency Response:	$\pm 2 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	$\pm 2 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
Insertion Loss:	$7.5 \mathrm{~dB} \pm 1 \mathrm{~dB}$	$11.5 \mathrm{~dB} \pm 2 \mathrm{~dB}$	$15 \mathrm{~dB} \pm 2.5 \mathrm{~dB}$	$18 \mathrm{~dB} \pm 2.5 \mathrm{~dB}$	$21 \mathrm{~dB} \pm 2 \mathrm{~dB}$	$23 \mathrm{~dB} \pm 2.5 \mathrm{~dB}$
Return Loss:	14 dB	12 dB	14 dB	12 dB	13 dB	12 dB
Isolation:	16 dB	16 dB	20 dB	20 dB	16 dB	20 dB
Size:	$\begin{aligned} & \text { 1 RU: } 1.75 " \mathrm{Hx} \\ & 19 " \mathrm{~W} \text { x } 6.5 " \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { 1 RU: } 1.75 " \mathrm{H} x \\ & 19 " \mathrm{~W} \text { x } 6.5 " \mathrm{D} \end{aligned}$	$\begin{aligned} & \text { 1 RU: } 1.75 " \mathrm{Hx} \\ & 19 " \mathrm{~W} \text { x } 6.5 " \mathrm{D} \end{aligned}$	$\begin{aligned} & 1 \mathrm{RU}: 1.75 " \mathrm{Hx} \\ & 19 " \mathrm{~W} \text { x } 6.5 " \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 3 \text { RU: } 5.25 " \mathrm{H} x \\ & 19 " \mathrm{~W} \times 20^{\prime \prime} \mathrm{D} \end{aligned}$	$\begin{aligned} & \hline 3 \text { RU: } 5.25 " \mathrm{H} x \\ & 19^{\prime \prime} \mathrm{W} \times 20 " \mathrm{D} \end{aligned}$
Weight:	3.5 lbs Gross (Boxed), 2.5 lbs Net	3.5 lbs Gross (Boxed), 2.5 lbs Net	4 lbs Gross (Boxed), 3 lbs Net	4.5 lbs Gross (Boxed), 3.5 lbs Net	12 lbs Gross (Boxed), 9 lbs Net	14 lbs Gross (Boxed), 9.62 lbs Net

[^11]
AMP 2150

L-Band Line Amplifier

General Description:

The AMP 2150 series of L-band line amplifiers provide high gain as well as optional DC path continuity. These amplifiers are manufactured utilizing highly reliable surface mount technology and advanced microstrip RF circuitry and are typically deployed in satellite telecommunication networks to compensate for L-band signal paths through long coaxial cable runs. Housed in either a standard 1 RU rack mount enclosure or a rugged weatherproof extruded housing, the AMP 2150 series amplifiers are the optimum choice for any L-band satellite communications application.

Features \& Benefits:

- High (adjustable) gain over full bandwidth
- Housed in a rugged, weatherproof extruded aluminum enclosure or in a 1 RU rack mount chassis
- Passes a 10 MHz reference signal
- LNB power available

Specifications:*	AMP 2150	AMP 2150 (Dual Rack Mounted)	AMP 2150 (Quad Rack Mounted)
RF Connectors:	F-Type or BNC 75Ω or 50Ω	F-Type or BNC 75Ω or 50Ω	F-Type or BNC 75Ω or 50Ω
Operating Frequency:	$700-2150 \mathrm{MHz}$	$700-2150 \mathrm{MHz}$	$700-2150 \mathrm{MHz}$
Frequency Response:	$\pm 1 \mathrm{~dB}$	$\pm 1 \mathrm{~dB}$	$\pm 1 \mathrm{~dB}$
Input P1dB:	$-10 \mathrm{dBm}$	$-10 \mathrm{dBm}$	-10 dBm
Noise Figure:	8 dB at +20 dB Gain	8 dB at +20 dB Gain	8 dB at +20 dB Gain
OIP3:	$\begin{aligned} & +4.5 \mathrm{dBm} \text { (with } 20 \mathrm{~dB} \text { Gain and Pin } \\ & =-30 \mathrm{dBm} \text {) } \end{aligned}$	$\begin{aligned} & +4.5 \mathrm{dBm} \text { (with } 20 \mathrm{~dB} \text { Gain and Pin } \\ & =-30 \mathrm{dBm}) \end{aligned}$	+4.5 dBm (with 20 dB Gain and Pin $=-30 \mathrm{dBm}$)
Input Return Loss:	12 dB	12 dB	12 dB
Output Return Loss:	12 dB	12 dB	12 dB
Gain Range:	0 dB to +24 dB Adjustable by Internal Pot (Factory Preset to 20 dB)	0 dB to +24 dB , Adjustable From the Front Panel (Factory Preset to 20 dB)	0 dB to +24 dB , Adjustable From the Front Panel (Factory Preset to 20 dB)
10 MHz Insertion Loss:	$1.5 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ @ +20 dB Gain	$1.5 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ @ +20 dB Gain	$1.5 \mathrm{~dB} \pm 0.5 \mathrm{~dB} @+20 \mathrm{~dB}$ Gain
Group Delay:	0.3 ns	0.3 ns	0.3 ns
Power Requirements:	+18 to +24 VDC, 190 mA	+18 to +24 VDC, 190 mA	+18 to +24 VDC, 190 mA
Power Consumption:	4.6 W	4.6 W/ AMP Module	4.6 W/ AMP Module
Power Connectors:	Via Output Connector J-hooks	Via Output Connector (AC Optional)	Via Output Connector (AC Optional)
Size:	1.25 " H x 3.25 " W x $5^{\prime \prime}$ L	$1 \mathrm{RU}: 1.75$ " $\mathrm{H} \times 19 \mathrm{~W}$ W x 6.5"D	1 RU: 1.75 " H x 19"W x 14"D
Weight:	0.5 lbs	3.6 lbs Gross (Boxed), 2.6 Ibs Net	9 lbs Gross (Boxed), 8 lbs Net
Operating Temperature:	-10° to $+60^{\circ} \mathrm{C}$	-10° to $+60^{\circ} \mathrm{C}$	-10° to $+60^{\circ} \mathrm{C}$

[^12]

[^13]
7807LT-2, 7807LR-2, 7708LT, 7708LR Rack-Based Modules

7807LT-2

7807LR-2

- Single channel and dual channel Transmit and Receive modules are available in a single slot. hot-swappable form factor. Evertz RF over Fiber modules offer very flat frequency response of $+/-1 . \mathrm{SdB}$ (worst case) resulting in linear performance and better CNR.
- Standard Tx \& Rx models offer an optical budget of 16 dBm for up to 45 km transport. For applications with limited fiber or longer distance transport. these modules are available in coarse wavelength division multiplexing and dense wavelength division multiplexing options for transport over 100km.
- EDFA options are also available.
- Features
- Full remote monitoring \& control via network monitoring service
- 13/IBV + 22kHz LNB powering
- Full power RF output per RF port for monitoring or distribution
- RF connectors available with BNC 50 or $750 h m$, F-Type, SMA
- -10 to 50 dB of manual and automatic gain control (AGC) in I dB step
- Fiber connectors available with SC or FC connectors and UPC or APC finish
- Dense wavelength division multiplexing options available for multiplexing up to 96 RF signals over a single fiber

The 7708LT is a fiber optic transmitter for RF signals in the extended L-Band or wider frequency range. It accepts a single RF input on coaxial cable and provides a single output for optical transmission. An RF monitor output provides a convenient means of obtaining peak satellite signal strength, or additional signal distribution.

Gain may be adjusted manually or managed automatically via AGC. With SmartMON ${ }^{\text {TM }}$, incoming RF signal strength, LNB current and other data are relayed over the fiber output for monitoring through SNMP/VistaLINK ${ }^{\star}$ (requires SmartMON ${ }^{\text {TM }}$ capable companion fiber receiver) 13/18V DC adjustable LNB power with 22 kHz tone is also provided.

Features \& Benefits

- Extended frequency response for extended L-Band, off-air DTV, and other signals
- Protocol independent design - transports all modulation formats
- LNB power with selectable $13 / 18 \mathrm{~V}$ DC
- LNB current limit and short circuit protection
- LNB current monitoring for advance warning of LNB failure
- 22 kHz tone on/off for LNB local oscillator control
- RF monitor output for signal peaking and signal distribution
- Manual gain and AGC modes
- Wide range adjustable gain in 0.5 dB steps for fine tuning signal levels and optimizing CNR
- Available with 1310 nm , CWDM (ITU-T G.694.2) and +11 dBm high power DWDM (ITU-T G.694.1) laser options
- SmartMON ${ }^{\text {TM }}$ capability provides remote status monitoring via SNMP without a separate data connection
- VistaLINK ${ }^{\circledR}$ capability is available for monitoring and control when modules are used in a 3RU 350FR, 7800FR frame and a 7700FC VistaLINK ${ }^{\circledR}$ frame controller is installed in Slot 1 of the frame
- Fiber link provides electrical isolation between antenna and facility, mitigating ground loop and lightning issues
- The 7708LT occupies one card slot and can be housed in a 1 RU frame that will hold up to $3 x$ modules, a 3RU frame that will hold up to 15 x modules, a 350 FR which will hold up to 7 x modules or a standalone enclosure, which holds one module

Specifications

RF Input:		Frequency Range:	$50-3000 \mathrm{MHz}$
Number of Inputs:	1	Output Level:	Within -2.0dB of input signal
Connector:	BNC per IEC 61169-8 Annex A (F-Type and SMA Optional)	Optical Output:	
Input Impedance:	75Ω (50) Optional)	Number of Outputs:	1
Frequency Range:	$50-3000 \mathrm{MHz}$	Connector:	Female SC/UPC, ST/UPC,
Return Loss:			FC/UPC, SC/APC, FC/APC
$120 \mathrm{MHz}-2.3 \mathrm{GHz}$:	$>14 \mathrm{~dB}$	Operating Wavelength	
$2.3-3 \mathrm{GHz}$:	$>12 \mathrm{~dB}$	Standard:	1310nm DFB
Input Power Range:	-10 dBm to -60 dBm	CWDM:	1270-1610nm
Gain Range:	0 to +30 dBm in 0.5 dB steps	DWDM:	C-Band (ITU G.694.1 complia
IMD:	$<-55 \mathrm{dBc}$ at -15 dBm input and 0 dB gain	Output Power: Standard 1310nm:	+2dBm
Input IP3:	$+10 \mathrm{dBm}$	CWDM:	$+2 \mathrm{dBm}$
LNB Power:		DWDM:	+11dBm
Voltage:	13 V DC, 18 V DC, off (selectable)		
Current:	400 mA	RF System Performa	nce 7708LT+7708LRA pair:
Protection:	Short Circuit, current limited	Frequency Response:	
LO Control:	22 kHz on/off (selectable)	$950-2150 \mathrm{MHz}$:	$\pm 1.5 \mathrm{~dB}$
		$120 \mathrm{MHz}-3 \mathrm{GHz}$:	$\pm 2 \mathrm{~dB}$
RF Monitor Output:		$\pm 0.25 \mathrm{~dB}$ on 36 MHz	BW to 2.3 GHz
Number of Outputs:	1		
Connector:	BNC per IEC 61169-8 Annex A (F-Type and SMA Optional)	RF System Performa Frequency Response:	nce 7708LT+7708LR-H pair:
Output Impedance:	75Ω (50) Optional)	$950-2150 \mathrm{MHz}$:	$\pm 1.5 \mathrm{~dB}$
Return Loss:	$>15 \mathrm{~dB}$	$120 \mathrm{MHz}-2.3 \mathrm{GHz}$	$\pm 2 \mathrm{~dB}$
		$\pm 0.25 \mathrm{~dB}$ on 36 MHz	

7882IRD Series

DVBS/S/S2X MPEG-2/H. 264 SD/HD Integrated Receiver Decoders

The 78821RD Series is the basis of a professional platform for receiving, demodulating and decoding digital DVB-S/S2/S2X satellite signals. With a compact, modular form-factor the 7882 IRD represents one of the highest density and most flexible solutions in the industry. The 7882IRD-S2X may be mounted in Evertz' 7800 series enclosures, providing a high-density, modular solution. Options for an innovative removable front control panel and $1 R U$ chassis also allow the IRD to be packaged in the traditional IRD form factor, while maintaining all of the benefits of modularity.

Applications include signal reception for broadcasters, cable, DTH and IPTV providers, or any other small to large head-end operators who need to receive and utilize or re-distribute satellite content. The 7882IRD series provides ASI and IP outputs, ideal for turnaround, transcoding, monitoring or other applications where the received signal remains in the compressed domain. For baseband output, the 7882 RD2 2 utilizes an advanced decoder with support for both MPEG-2 and H.264/AVC, SD or HD encoded signals, optionally up to 4:2:2 10-bit.

In addition to a quad-RF input, the 7882 IRD also provides inputs for IP and ASI signals, making it a future-proof, universal reception platform for signals delivered over satellite, fiber and other network media. Monitoring parameters such as EsNo ratio, RF power, BER and packet errors present a convenient solution for broadcasters and cable companies who wish to not only receive, but also remotely monitor signal quality. Also, these parameters as well as Full monitoring and control of the IRD are relayed over SNMP. for convenient remote access using Evertz own VistaLINK ${ }^{*}$ PRO SNMP monitoring and control package. Additionally, low-speed data support is provided for in-band control.

For applications requiring decryption, the IRD provides a slot for installation of a customer supplied conditional access module. DVB-CI compliant conditional access modules and formats are supported.

Features \& Benefits

- Modular design, allowing flexible configurations along with easy system reconfiguration and service
- May be mounted in the 7800FR series frames in high-density applications
- May be mounted in the 7801FR and fitted with the 7801CP control panel, yielding a 1 RU 7882 IRD with removable front control panel and optional redundant power supplies, all of which are hot-swappable and may be serviced without any de-cabling required
- Up to two units may be mounted in the 7801FR and used with the 7801 CP , providing a dual-IRD solution in 1 RU
- Future-proof with upgrade paths to support future modulation and encoding technologies
- Standard support for advanced modulation schemes, including DVB-S2 with 16APSK, 32APSK and 64APSK
- Optional DVB-S2X Modulation support
- Standard support for advanced transport stream processing including service filtering and output bitrate control
- Long frames and Short frames
- CCM, VCM and ACM
- SCPC and MCPC support
- Automatic detection and configuration of modulation type, filter roll-off, symbol rate, pilot presence (on/off) and frame length
- Supports optional on-board Input auto-failover between various inputs including RF/ASI or IP inputs
- Flexible decoding of SD and HD as standard
- Support for encoding profiles from distribution to contribution grade, including H. 264 in 4:2:0 8-bit and optional 4:2:2 10-bit formats
"software upgradable", along with legacy MPEG-2
- Available DVB-CI slot for conditional access modules
- Available BISS and BISS-E decryption
- Flexible mid-stage access to compressed domain signals, including ASI and optional IP output along with ASI and optional IP inputs
- Straight pass through or PID filtering/remapping of compressed stream outputs
- Standard Dolby ${ }^{*}$ pass through and decode of Dolby ${ }^{\star}$ AC3 and MPEG-2 Layer 1 audio
- Optional decoding of Dolby ${ }^{\star}$ E, Dolby ${ }^{\oplus}$ Plus and AAC
- Eight AES outputs
- Optional Audio Video Monitoring (AVM option) for audio mute and video freeze and black detection
- Optional SCTE 105/34 translation
- Control through web-browser or SNMP using third-party application or Evertz' own VistaLINK ${ }^{\oplus}$ SNMP control and monitoring software
- Ability to store ten preset configurations
- Event log support with exporting capabilities are supported on VLPRO and built-in Control port for direct control and management of the IRD

Specifications

RF Input:		FECFRAME	200 (bits)	Compression Form	
Number:	4	DVB-S2x Q	1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4,		MP1L2 and Dolby ${ }^{\text {® }}$ Digital
Connector:	$75 \Omega \text { F-Type }$		$4 / 5,5 / 6,8 / 9,9 / 10,11 / 45$	Passthrough:	AC-3 upto 3/2L
Frequency:	$950-2150 \mathrm{MHz}$	DVB-S2x 8 P	$3 / 5,2 / 3,3 / 4,5 / 6,8 / 9$,	Optional:	Dolby ${ }^{\text {® }}$ E decode and AAC-LC
Power:	-20 to -65dBm		7/15, 8/15, 26/45, 32/45		
Voltage:	13/18V DC, off (selectable)	DVB-S2x 16	2/3, 3/4, 4/5, 5/6, 8/9,	Ancillary Data:	
Max Current:	400 mA		7/15, 8/15, 26/45, 3/5, 32/45	Embedding of:	Audio passthrough Closed
Protection:	Short circuit, overload	DVB-S2x 32	2/3, 32/45		caption/Teletest SCTE35 to
Local Oscillator Contro					104 (+SCTE104 option)
	22 kHz on/off (selectable);	ASI Input:			AFD/WSS
	$1000-35000 \mathrm{MHz}$ to be used	Number:	1		Time code
	for C -Band \& Ku-Band	Type:	ASI per DVB TR101-891		
Input Return Loss:	15 dB Min.	Connector:	75Ω BNC	High Quality Dow	onvert (+HDC option):
Noise Figure:	9dB Max.			Down Conversion:	SMPTE ST 292 to ST 259
AFC Tuning Range:	$\pm 67 \mathrm{MHz}$ using search range	ASI Output:		Aspect Ratio:	Fixed Scalar or follow AFD
IF Filter Bandwidth:	Adjusted from 6 MHz to	Number:	1		
	50 MHz in 1 MHz steps	Type:	ASI per DVB TR101-891	Note: +HDC fe	is not supported
		Connector:	75Ω BNC	when decoding	video
Modulation Support:					
Symbol Rate:	Up to:	MPEG over	utput (+IP Option):	Low Speed Data:	
QPSK, 8PSK, 16APSK		Number:	1	Number:	1
	64 Msps	Type:	SMPTE ST 2022-1, -2	Type:	De-encapsulation from
32APSK:	51 Msps	Connector:	1GbE Data port using SFP		control data PID
64APSK:	43 Msps		(SFP ordered separately)	Connector:	RJ-45, 10/100/1000
Coding Rates:		Conditional	upport:	Frame Sync (+FS	ption):
FECFRAME (normal) 6	64800 (bits)	One DVB-C		- Sync 1080i	94, 1080i/50, 720p/59.94,
DVB-S QPSK:	1/2, 2/3, 3/4, 5/6, 7/8			720p/50,52	.94, 625i/50
DVB-S2 QPSK:	1/4, 1/3, 2/5, 1/2, 3/5, 2/3,	Baseband V		- Video Delay	ween $3 x$ lines
	3/4,4/5, 5/6, 8/9, 9/10	Number:	3 (third BNC is configurable	and 1x fram	$3 x$ lines
DVB-S2 8PSK:	3/5, 2/3, 3/4, 5/6, 8/9, 9/10		to be ASI or SDI output)	- Programma	output phase with
DVB-S2 16APSK:	2/3, 3/4, 4/5, 5/6, 8/9, 9/10	Connector:	75Ω BNC	respect to r	ence input
DVB-S2 32APSK:	3/4, 4/5, 5/6, 8/9, 9/10	Type:	SDI (SMPTE ST 259),	- Reference i	via common 7800FR/7801FR frame
DVB-S2x QPSK:	$\begin{aligned} & 1 / 4,1 / 3,2 / 5,1 / 2,3 / 5,2 / 3 \\ & 3 / 4,4 / 5,5 / 6,8 / 9,9 / 10 \end{aligned}$		HD-SDI (SMPTE ST 292-1), SMPTE ST 272-1994	reference co	ctor
	13/45, 9/20, 11/20		(10-bit) $270 \mathrm{Mb} / \mathrm{s}$,	Control:	
DVB-S2x 8PSK:	$\begin{aligned} & 3 / 5,2 / 3,3 / 4,5 / 6,8 / 9 \\ & 9 / 10,23 / 36,25 / 36,13 / 18 \end{aligned}$		3Gb/s (SMPTE ST 424M/ ST $424 \mathrm{M}-\mathrm{AB}$)	- SNMP over - Web brows	ernet via frame controller
DVB-S2x 8APSK-L:	5/9, 26/45			- Low speed	rol data over Ethernet
DVB-S2x 16APSK:	2/3, 3/4, 4/5, 5/6, 8/9,	Note: +H	is not supported	output deriv	rom data PID
	9/10 (S2-MODCODs),	when decod		- 4 x GPO foll	g commercial trigger
	26/45, 3/5, 28/45, 23/36,				
	25/36, 13/18, 7/9, 77/90	AES Audio		Electrical:	
DVB-S2x 16APSK-L:	5/9, 8/15, 1/2, 3/5, 2/3	Number:	8 PIDS (16 channels	Power:	<46 Watts
DVB-S2x 32APSK:	3/4, 4/5, 5/6, 8/9, 9/10,		of embedded PCM)	Voltage:	12 V DC
	32/45, 11/15, 7/9	Connector:	BNC breakout from DB-15	Temperature:	$0-50^{\circ} \mathrm{C}$
DVB-S2x 32APSK-L:	$2 / 3$	Type:	Unbalanced AES		
DVB-S2x 64APSK:	11/15, 7/9, 4/5, 5/6	Standard:	AES3 (aka AES/EBU) as	Physical:	
DVB-S2x 64APSK-L:	32/45		an AES output standard	Number of Slots:	2

Evertz 2406LR/ 2408LT
 L-Band/Wideband Standalone Fiber Receiver Series

Evertz 2406LR

RX Specifications:*	Evertz 2406LR
Operating Frequency:	$88 \mathrm{MHz}-3000 \mathrm{MHz}$
Output IMD:	$<-55 \mathrm{dBc} @-3 \mathrm{dBm}$ Output and 25 dB Gain
P1dB:	+28 dBm
RF Gain:	-6 dB to +24 dB in 2 dB Steps
Return Loss:	$>15 \mathrm{~dB} 88 \mathrm{MHz}-2300 \mathrm{MHz}$
Optical Connector:	FC/APC
Optical Wavelength:	1270 to 1610 nm
Max Optical Input Power:	+3 dBm
RF Connector:	$\mathrm{F}-$ Type, $50 \Omega \mathrm{BNC}$
Power:	$4.8-5.2 \mathrm{~V} \mathrm{DC}$
Size:	$5.4^{\prime \prime L} \times 2.4 " \mathrm{~W} \times 1.2^{\prime \prime \mathrm{H}}$
Environment:	IP65

*Specifications may vary with connector type. See individual specification sheet for specific performance data.

Evertz 2408LT

RX Specifications:*	Evertz 2408LT
Operating Frequency:	$88-3000 \mathrm{MHz}$
RF Input Power:	-60 dBm to -10 dBm
Output IMD:	$<-55 \mathrm{dBc} @-15 \mathrm{~dB}$ Input and Min. Gain
LNB Power:	13 V , Off and $0 \mathrm{~Hz}, 22 \mathrm{kHz}$
RF Gain:	+2 to +30 dB in 2 dB Steps
Return Loss:	$\begin{array}{\|l} 88-500 \mathrm{MHz}>11 \mathrm{~dB} \\ 500 \mathrm{MHz}-3000 \mathrm{MHz}>15 \mathrm{~dB} \end{array}$
Optical Connector:	FC/APC
Optical Wavelength:	1310 nm
Optical Power Output:	+2 dBm
Laser Type:	DFB
RF Connector:	F-Type, 50Ω BNC
Power:	$4.8-5.2 \mathrm{~V}$ DC
Size:	5.4"L x 2.4"W x 1.2"H
Environment:	IP65

[^14]
Evertz 2400 ODU
 Outdoor Integrated RF Fiber Transmission System

2400 ODU

General Description:

The 2400ODU-8 is a compact, weatherproof enclosure that provides a convenient, pre-integrated package for fiber transport of satellite and other signals within the extended L-Band range. The 24000DU-8 can house up to $8 x$ active fiber transmit (2408LT) or receive (2406LR) modules and an 8 -channel power supply (2400PSUA-8).

The 2400 ODU comes with mounting brackets to be conveniently mounted directly on or near the antenna structure.

This turnkey solution provides fiber transport of up to $8 x$ RF signals over individual fibers or multiplexed over a single fiber, and power the connected LNBs.

The 2400 ODU-8 also features built-in surge protectors for lightning protection and has options for integrated fiber multiplexer, 10 MHz reference transport, RF protection switching, splitters, Bias-Tee and more.

Features \& Benefits:

- Fiber link provides electrical isolation between antenna and facility, mitigating ground loop and lightning issues
- Weather-sealed enclosure with durable powder coat finish
- Wide operating temperature range
- Lightning protection included on RF inputs/outputs
- LNB current monitoring for advance warning of LNB failure
- Serial and Ethernet data transceivers available for remote antenna control, monitoring and other applications
- All modules are field-replaceable and hot-swappable
- SmartMON ${ }^{\text {TM }}$ monitoring without a separate data connection
- Redundant power supply

Chassis Specifications:*	Evertz 2400 ODU
Slots:	8
Channels (max):	8
Power Consumption:	<1 Amp Per Input
Size:	$9 " \mathrm{D} \mathrm{x} \mathrm{16"} \mathrm{~W} \mathrm{x} \mathrm{16"} \mathrm{H}$
Weight (chassis only):	11 lbs
Environment:	-30 to $+80^{\circ} \mathrm{C}$

*Specifications may vary with connector type. See individual specification sheet for specific performance data.

7780D4A-ASI

Quad ASI TDM-Demux

Features \& Benefits

- Single card TDM demultiplexer for four DVB-ASI transport streams
- Adjacent outputs unaffected by loss of any DVB-ASI input feed at the 7780M4ASI TDM Mux
- Fully hot-swappable from front of frame
- Monitor port output is user-selectable from the four ASI outputs
- Comprehensive signal and card status monitoring via four digit card edge display or remotely through SNMP and VistaLINK ${ }^{\circledR}$
- VistaLINK ${ }^{\circledR}$ capability is available when modules are used with the 3RU 7700FR-C frame and a 7700FC VistaLINK ${ }^{\circledR}$ Frame Controller module in slot 1 of the frame
- Occupies one card slot \& can be housed in a standalone frame, a 1 RU frame holding up to 3 modules or a 3RU frame holding up to 15 modules

Specifications

Serial Input: Standard:		Serial ASI Outputs:		Electrical:	
	SMPTE ST 259-C compliant TDM	Standard:	DVB-ASI: DVB TR 101 891-270	Voltage:	+12V DC
	stream as provided by companion	Number of Outputs:	4 independent DVB-ASI	Power:	10W
	7780M4-ASI	Monitor Output:	1 output, selectable from outputs 1-4	EMI/RFI:	Complies with FCC Part 15, Class A
Number of inputs:	1	Connector:	BNC per IEC 61169-8 Annex A		EU EMC directive
Connector:	BNC per IEC 61169-8 Annex A	Signal Level:	800 mV nominal		
Signal Level:	800 mV nominal	DC Offset:	$0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	Physical (n	lots):
Equalization:	Automatic to 250 m @ $270 \mathrm{Mb} / \mathrm{s}$ with	Rise and Fall Time:	900ps nominal	350FR:	1
	Belden 8281 or equivalent cable	Overshoot:	< 10\% of amplitude	7700FR-C:	1
Return Loss:	$>15 \mathrm{~dB}$ up to $270 \mathrm{Mb} / \mathrm{s}$	Return Loss: Wide Band Jitter:	$\begin{aligned} & >15 \mathrm{~dB} \text { up to } 270 \mathrm{Mb} / \mathrm{s} \\ & <0.2 \mathrm{UI} \end{aligned}$		

7780M4-ASI
 Quad ASI TDM-Mux

Features \& Benefits

- Single card TDM multiplexer for four DVB-ASI transport streams
- Inputs may be MPTS or SPTS with a combined bandwidth of up to $210 \mathrm{Mb} / \mathrm{s}$
- Signal transport uninterrupted by loss of any/all DVB-ASI input feeds
- Comprehensive signal and card status monitoring via four digit card edge display or remotely through SNMP and VistaLINK ${ }^{\ominus}$
- VistaLINK ${ }^{\oplus}$ capability is available when modules are used with the 3RU 7700FR-C frame and a 7700FC VistaLINK ${ }^{\circledR}$ Frame Controller module in slot 1 of the frame
- Fully hot-swappable from front of frame
- Output is a single $270 \mathrm{Mb} / \mathrm{s}$ signal compatible with SMPTE 259M-C transport
- Monitor port output is user-selectable from the four inputs

Specifications

ASI Input:		Output:		Physical:	
Standard:	DVB-ASI: DVB TR $101891-270$	Standards:		350FR:	1
Number of inputs:	4 independent DVB-ASI $270 \mathrm{Mb} / \mathrm{s}$	Output:	SMPTE 259M-C framing compatible	7700FR-C:	1
	signals	Monitor:	DVB-ASI output	7800FR:	1
Max Input Bitrate:	$210 \mathrm{Mb} / \mathrm{s}$	Total Active Bitrate:	$210 \mathrm{Mb} / \mathrm{s}$		
Connector:	4 BNC per IEC 61169-8 Annex A	Number:	$1+1$ monitor	Compliance:	
Return Loss:	$>15 \mathrm{~dB}$ up to $270 \mathrm{Mb} / \mathrm{s}$	Connector:	BNC per IEC 61169-8 Annex A	Electrical Safety:	CSA Listed to UL 60065-03, IEC
		Signal Level:	800 mV nominal		60065
		DC Offset:	$0 \mathrm{~V} \pm 0.5 \mathrm{~V}$		Complies with CE Low voltage
		Rise and Fall Time:	900ps nominal		Directive
		Overshoot:	< 10% of amplitude	EMI/RFI:	Complies with FCC Part 15, Class A
		Return Loss:	$>15 \mathrm{~dB}$ up to $270 \mathrm{Mb} / \mathrm{s}$		EU EMC Directive
		Wide Band Jitter:	< 0.2 UI		
		Electrical:			
		Voltage:	+12V DC		
		Power:	10W		

Quintech Electronics \& Communications, Inc. 250 Airport Road Indiana, PA 15701 USA

Toll Free: 1-800-839-3658
Telephone: 1-724-349-1412
Fax: 1-724-349-1421
Email: info@quintechelectronics.com
www.quintechelectronics.com

Made in the USA

[^0]: ${ }^{1}$ Specifications valid at unity gain (Input gain $=0 \mathrm{~dB}$, Output gain $=0 \mathrm{~dB}$)

[^1]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.
 ${ }^{1}$ Specifications valid at unity gain (Input gain $=0 \mathrm{~dB}$, Output gain $=0 \mathrm{~dB}$)

[^2]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.

[^3]: 'Specifications valid at unity gain (Input gain $=0 \mathrm{~dB}$, Output gain $=0 \mathrm{~dB}$)

[^4]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.
 ${ }^{1}$ Specifications valid at unity gain (Input gain $=0 \mathrm{~dB}$, Output gain $=0 \mathrm{~dB}$)

[^5]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.

[^6]: *All product designs and specifications subject to change without notice. See individual specification sheet for specific performance data

[^7]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.

[^8]: *Specifications may vary with connector type. See individual specification sheet for specific performance data. Call for other available configurations and options. ${ }^{1}$ Adapters sold separately

[^9]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.

[^10]: *Specifications may vary with connector type. See individual specification sheet for specific performance data. Call for additional configuration or powering. AC adapter sold separately

[^11]: *Specifications may vary with connector type. See individual specification sheet for specific performance data. Call for additional configuration or powering.

[^12]: *Specifications may vary with connector type. See individual specification sheet for specific performance data. Call for custom configurations.

[^13]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.

[^14]: *Specifications may vary with connector type. See individual specification sheet for specific performance data.

